Arquivo do mês: junho 2017
A importância do conhecimento sobre radioproteção pelos profissionais da radiologia (Parte 3)
Fonte: SEARES , Marcelo Costa; FERREIRA, Carlos Alexsandro. A importância do conhecimento sobre radioproteção pelos profissionais da radiologia. CEFET/SC Núcleo de Tecnologia Clínica, Florianópolis, Brasil.
Formas de radioproteção
A proteção radiológica dos trabalhadores ocupacionalmente expostos à radiação ionizante (Raiosx diagnósticos, Medicina Nuclear, Radioterapia e Odontologia) é essencial para minimizar o surgimento de efeitos deletérios das radiações. As formas de se reduzir a possível exposição dos trabalhadores são: Tempo, Distância e Blindagem.
Tempo de exposição
A redução do tempo de exposição ao mínimo necessário, para uma determinada técnica de exames, é a maneira mais prática para se reduzir a exposição à radiação ionizante. No gerenciamento de um serviço de radiologia, o rodízio dos técnicos durante os procedimentos de radiografia em leito de UTI é uma forma de limitar-se a exposição dos técnicos aos raios-x.
Distância da fonte
Quanto mais distante da fonte de radiação, menor a intensidade do feixe. A intensidade de radiação é proporcional ao inverso do quadrado da distância entre o ponto e a fonte.
Blindagem para pacientes
A proteção dos pacientes através do uso de acessórios é obrigatória. O protetor de gônadas deve ser usado em pacientes em idade reprodutiva, se a linha das gônadas não estiver próxima do campo primário de irradiação, para que não ocorra interferência no exame. A utilização de saiotes plumbíferos em pacientes submetidos aos raios-x é uma forma barata e eficaz de proteção.
Blindagem das áreas
As barreiras de proteção radiológica devem ser calculadas inicialmente para a exposição primária do feixe de radiação, de radiação espalhada e da radiação de fuga. As salas de raios-x devem ser blindadas com chumbo ou equivalente em barita. Pisos e tetos em concreto podem ser considerados como blindagens, dependendo da espessura da laje, tipo concreto (vazado ou não), distância da fonte, geometria do feixe e fator de ocupação das áreas acima e abaixo da sala de raios-x. O chumbo possui densidade 11,35 g/cm3 , o concreto de 2,2 g/cm3 . A escolha do uso da massa baritada com relação ao lençol de chumbo está em geral relacionada à minimização de custo.
Considerações finais
A radio proteção tem a finalidade precípua de fornecer condições seguras para atividades que envolvam radiações ionizantes. Condições básicas de segurança devem ser observadas no exercício profissional. O presente artigo revisou as primeiras observações até o primeiro relato histórico, feito em 1902, sobre os efeitos biológicos das radiações, passando pelas descobertas realizadas pela radio biologia: os efeitos deletérios das radiações. Baseado nessas descobertas fez-se necessário elaborar princípios de proteção radiológica e desenvolver formas de radio proteção aplicáveis na rotina dos serviços de radiologia.
Cabe ao profissional ter conhecimento pleno do assunto. Este artigo foi elaborado para revisar conhecimentos, reforçando conceitos e pressupostos científicos. Propõese o seu aprofundamento através de revisão de normas e diretrizes relacionadas à radio proteção estabelecidas pela Vigilância Sanitária e CNEN, visto que determinados assuntos deixaram de ser abordados no presente artigo. As diretrizes básicas relacionadas à radio proteção encontram-se na norma NE03.01 do CENEN.
Referências [1] BIRAL, Antônio Renato, Radiações ionizantes para médicos físicos e leigos, Florianópolis: Insular: 2002. [2] DIMENSTEIN, Renato; HORNOS, Yvone M. Mascarenhas, Manual de proteção radiológica aplicada ao radiodiagnóstico, São Paulo: Editora SENAC, 2001.
A importância do conhecimento sobre radioproteção pelos profissionais da radiologia (Parte 2)
Fonte: SEARES , Marcelo Costa; FERREIRA, Carlos Alexsandro. A importância do conhecimento sobre radioproteção pelos profissionais da radiologia. CEFET/SC Núcleo de Tecnologia Clínica, Florianópolis, Brasil.
Risco fetal
O risco fetal para mulheres grávidas expostas a radiação depende do período da gestação em que ocorreu a exposição. O resultado mais provável da exposição à radiação durante os dez primeiros dias pós-concepção é a morte uterina prematura. O feto é mais vulnerável a indução de anomalias congênitas pela radiação durante o primeiro trimestre, mais especificamente de 20 a 40 dias após a concepção. Considera-se que, quando o número de células do embrião é pequeno, a probabilidade de efeito é maior, pois a multiplicação celular é mais intensa. A microcefalia induzida pela radiação é o efeito mais provável, quando a exposição ocorre no período gestacional de 50 a 70 dias após a concepção.
No caso de retardo mental e de crescimento, isso ocorre para 70 a 150 dias. O maior efeito após 150 dias é o aumento do risco de malignidades infantis. O risco de anormalidades congênitas é baixo quando a exposição é menor do que 1mGy. Para doses maiores do que 1mGy recebidas pelo feto no segundo ou terceiro trimestre da gravidez, o risco de leucemia pode ser aumentado em mais de 40%. Para doses maiores do que 100mGy aumenta o risco de malformação congênita. Nesse caso considera-se a possibilidades de interrupção de gravidez.
Proteção radiológica
As normas de proteção radiológica, apesar de indicarem valores de limitação da dose, estabelecem o princípio fundamental conhecido como ALARA. No Brasil, as diretrizes básicas referentes à proteção radiológica estão relacionadas na norma do CNEN (Comissão Nacional de Energia Nuclear) NE-3.01 (Diretrizes Básicas de Radio proteção). Os princípios básicos da proteção radiológica estabelecem condições necessárias para que as atividades operacionais que utilizam radiações ionizantes sejam adotadas em benefício da sociedade, considerando-se a proteção dos trabalhadores, do público, do paciente e do meio ambiente. Esses princípios são Justificativa, Otimização e Limitação de dose. Fazem parte de documentos internacionais nos quais são estabelecidos conceitos atuais de proteção radiológica.
Princípio da justificativa
Onde houver atividade com exposição à radiação ionizante, deve-se justificá-la, levando-se em conta os benefícios advindos. Do ponto de vista médico, esse princípio aplica-se de modo que todo exame radiológico deve ser justificado individualmente, avaliando a necessidade da exposição e as características particulares do indivíduo envolvido. É proibida a exposição que não possa ser justificada, incluindo a exposição às radiações ionizantes com o objetivo único de demonstração, treinamento ou outros fins que contrariem o princípio da justificativa.
Principio da otimização
Toda exposição deve manter o nível mais baixo possível de radiação ionizante. Deve-se planejar rigorosamente as atividades com radiação ionizante, analisando-se em detalhe o que se pretende fazer e como será feito. Nessa análise deve-se estabelecer medidas de proteção necessárias para alcançar o nível de exposição menor possível. A proteção radiológica é otimizada quando as exposições empregam a menor dose possível de radiação, sem que haja perda na qualidade da imagem.
Princípio da limitação da dose
As doses de radiação não devem ser superiores aos limites estabelecidos pelas normas de radio proteção de cada país. Esse princípio aplica-se para limitação de dose nos trabalhadores ocupacionalmente expostos à radiação ionizante para o público em geral. O limite individual de dose para o trabalhador da área de radiações ionizantes é 50 mSv/ano e para o público em geral é de 1mSv/ano. O princípio da limitação da dose não se aplica aos pacientes, pois se considera que possíveis danos causados pelo emprego de radiações ionizantes sejam ultrapassados, em muito, pelo benefício proporcionado.
A importância do conhecimento sobre radioproteção pelos profissionais da radiologia (Parte 1)
Fonte: SEARES , Marcelo Costa; FERREIRA, Carlos Alexsandro. A importância do conhecimento sobre radioproteção pelos profissionais da radiologia. CEFET/SC Núcleo de Tecnologia Clínica, Florianópolis, Brasil.
Para os profissionais que atuam na área de radiologia médica, é de extrema importância o conhecimento sobre radioproteção. Pacientes, público em geral, meio ambiente e o próprio profissional de radiologia estão sujeitos aos riscos inerentes à radiação ionizante. Para tanto, buscou-se revisar a literatura específica e referenciar pontos essenciais para alcançar o objetivo do presente artigo. Historicamente sabe-se que logo após Wilhelm Conrad Röntgen descobrir os raios-x, em 8 de novembro de 1895, os raios-x foram utilizados também por fotógrafos, até surgirem os seus primeiros efeitos danosos e verificar-se a necessidade de estudos mais profundos sobre os raios de Röntgen. A radiobiologia surgiu para estudar aqueles efeitos, desmistificando e trazendo à luz da ciência os efeitos determinísticos, estocásticos e o risco fetal.
A partir desse conhecimento fez-se necessário criar princípios de proteção radiológica. Já os princípios de radioproteção fornecem diretrizes básicas para as atividades operacionais que utilizam radiação ionizante. São eles: Justificativa, Otimização e Limitação da dose, todos baseados no princípio fundamental conhecido como ALARA acrômio para As Low As reasonable Achievable, que significa: tão baixo quanto possivelmente exequível. Em consonância com esses princípios, desenvolveram-se formas de radioproteção baseadas no Tempo de exposição, Distância da fonte de radiação e Blindagem com a finalidade de reduzir ao máximo os efeitos deletérios da radiação.
Efeitos biológicos da radiação
Em 1895, descobriram-se os raios-X e em 1896, a radioatividade natural. Logo em seguida, ficou evidente que tecidos biológicos eram afetados de maneira danosa pelas radiações ionizantes. Inicialmente, observaram-se danos na pele das mãos dos médicos radiologistas e queda de cabelo de pacientes irradiados. O primeiro relato associando a exposição às radiações à indução de câncer foi publicado em 1902. Logo em seguida, foi descoberto que a irradiação do tecido germinativo de plantas e animais resultava em efeitos nos descendentes. Entretanto, também foram detectados precocemente os benefícios do uso da radiação no diagnóstico e no tratamento médico (cura de tumores). Evidenciou-se a importância do estudo dos efeitos biológicos das radiações ionizantes, a fim de minimizar os seus efeitos prejudiciais no homem e em outras espécies e maximizar os benefícios do seu uso.
Radiobiologia
Após estudos realizados, verificou-se que moléculas importantes, como o DNA, poderiam ser danificadas pela produção de íons (radicais livres) e deposição da energia. Além disso, foi constatado que a quantidade do dano biológico produzido depende da energia total depositada, ou seja, a dose de radiação. Os efeitos das radiações são descritos através dos estudos de radiobiologia, em que são estabelecidas relações de dose / efeito. Considerando-se que as funções metabólicas ocorrem no citoplasma e as informações genéticas são encontradas no núcleo das células, as radiações podem induzir a quebra da molécula do DNA, ou causar um dano em uma seção dessa molécula, do qual resultará um dano somático no próprio indivíduo ou genético nos seus descendentes.
A molécula de DNA carrega o código necessário para o metabolismo celular, o qual é exatamente duplicado quando a célula se divide. Freqüentemente o dano causado pela radiação é reparado pelas próprias células, que apresentam sistemas de reparo específicos, mediados por enzimas, para diferentes tipos de lesão. Entretanto, quando isso não ocorre, há três alternativas: morte celular; incapacidade de reprodução ou modificação celular permanente, devido à alteração das sequências gênicas responsáveis pelo controle da multiplicação celular normal. A transformação celular é a primeira de uma série de etapas que pode levar a formação de um câncer. As unidades hereditárias (genes) são segmentos da molécula de DNA, que determinam as características das células, portanto, a mudança do código genético (mutação) de células germinativas pode afetar gerações futuras.
Os seres humanos são constituídos de células germinativas, que estão envolvidas na reprodução humana, e de células somáticas. A divisão das células reprodutivas é referida como meiose e a mitose representa a divisão de células somáticas. Os estágios dessa divisão incluem a pró-fase e a metáfase, que são as fases mais sensíveis às radiações. Quando células são submetidas a elevadas taxas de radiação, pode ocorrer a morte celular, definida como a perda da capacidade reprodutiva. As células com hipóxia são mais sensíveis à radiação e, portanto, a medula óssea, o esperma e os tecidos linfáticos são mais sensíveis do que o tecido nervoso. O mecanismo de interação da radiação com a célula pode ser de dois tipos: do tipo direto no DNA ou, mais comumente, o tipo indireto, quando há a formação de radicais livres que ionizam o citoplasma e afetam o DNA.
Efeitos determinísticos
Na maioria dos órgãos e tecidos do corpo há um processo continuo de perda e substituição de células. A radiação aumenta a destruição celular, mas esta pode ser fisiologicamente compensada por um aumento na taxa de reposição, sem maiores conseqüências para o organismo. Quando a redução do numero de células impede a função normal do órgão ou tecido, aparecem os efeitos clínicos. Alguns efeitos são de natureza funcional e podem ser reversíveis (distúrbios glandulares, efeitos neurológicos, danos vasculares). Quando o dano provocado pela exposição à radiação é grande e atinge um tecido vital, o individuo pode morrer. “A imediata relação “causa e efeito”, entre a exposição de um organismo a uma alta dose de radiação ionizante e os sintomas atribuídos à perda das funções de um tecido biológico, caracterizam o que se chama de “efeitos determinísticos”” (BIRAL, 2002, p.121).
Ao menos que a dose de radiação seja muito alta, a maioria das células não morre imediatamente, mas continua funcionando até tentar se dividir. Em tecidos com alta taxa de divisão celular, como os tecidos de revestimento, medula óssea e células germinativas, os danos ao DNA muitas vezes impedem a reposição do tecido lesado. Estes tecidos são os mais afetados apos irradiações agudas, apresentando efeitos precoces. Em tecidos constituídos principalmente por células nervosas, ósseas, tecido muscular e células hepáticas, as divisões celulares são pouco freqüentes e algumas lesões no genoma podem ocorrer sem maiores conseqüências. Nestes tecidos os efeitos determinísticos são observados menos freqüentemente e aparecem mais tardiamente. Por outro lado, tecidos diferenciados apresentam menor grau de recuperação quando seriamente danificados.
Os efeitos determinísticos apresentam um limiar de dose. O efeito é clinicamente observável apenas quando a dose da radiação é acima deste limiar. A magnitude do limiar depende da taxa de dose, do órgão irradiado e do efeito clínico. O intervalo para o aparecimento dos sintomas, sua natureza e severidade também dependem destes fatores, assim como da natureza da radiação. O limiar é diferente entre diferentes indivíduos devido à diferença de sensibilidade entre os mesmos. A probabilidade de ocorrência (números de indivíduos afetados) aumenta rapidamente com doses crescentes, acima do limiar, até que 100% das pessoas expostas apresentem os efeitos.
A severidade do dano é proporcional à dose, a partir do limiar. Por exemplo, os efeitos na pele são: eritema (de 3 a 5 Gy), descamação úmida (20 Gy) e necrose (50Gy). A morte após exposições agudas, não ocorre com doses inferiores a 1 Gy. Outros efeitos determinísticos têm limiares de dose superiores a 0,5Gy. “Para doses maiores do que 0,5 Gy (50 rad) o efeito da radiação é chamado determinístico ou mais comumente, não estocástico. Esse tipo de efeito geralmente resulta na morte celular”. (Dimenstein et al, 2001, p. 63). Para efeitos determinísticos, as principais fontes de informação no homem vêm de estudos sobre os efeitos: colaterais da radioterapia, nos radiologistas pioneiros, das bombas atômicas em Hiroshima e Nagasaki e de graves acidentes nucleares. São usadas ainda informações obtidas a partir de estudos com microorganismos, células isoladas crescidas in vitro ou animais.
Funções do Auxiliar de Saúde Bucal (Parte 2)
Fonte: http://blog.cursoasb.com.br/
Depois da consulta, auxiliar na gestão do consultório
O trabalho de um ASB não termina após o fim do atendimento ao cliente. Ele ainda executa algumas funções a realizar após o cliente ter sido atendido e antes da próxima consulta. Essas funções envolvem:
- Registrar dados e ter parte nas análises das informações relacionadas ao atendimento do paciente;
- Executar limpeza, desinfecção e esterilização dos aparelhos odontológicos, do instrumental e do ambiente de trabalho após a consulta;
- Processar filme radiográfico das consultas.
Essas funções de um Auxiliar de Saúde Bucal contribuem para que o processo de atendimento de um paciente esteja completo e seus dados devidamente arquivados.
Outras funções do Auxiliar de Saúde Bucal
Além de todo esse trabalho, o ASB também realiza algumas funções extras dentro da clínica, que são igualmente importantes.
- Aplicar medidas de biossegurança no armazenamento, transporte, manuseio e descarte de produtos utilizados durante o atendimento e resíduos odontológicos;
- Adotar medidas de biossegurança para o controle de infecções na clínica, minimizando os riscos de infecção do paciente e dos profissionais.
E as responsabilidades não param por aí, o ASB também pode (e deve!) promover ações de promoção da saúde bucal e de prevenção de problemas dentários, como ensinar técnicas de higiene bucal e prevenção de doenças para pacientes ou outros interessados. Ele pode também participar na realização de levantamentos e estudos desenvolvidos na área de odontologia – exceto na categoria de examinador.
Agora que você já sabe quais são as funções de um Auxiliar de Saúde Bucal, pode perceber como ela se tornou uma importante profissão dentro do cenário odontológico.
Funções do Auxiliar de Saúde Bucal (Parte 1)
Fonte: http://blog.cursoasb.com.br
O Auxiliar de Saúde Bucal (ASB) é uma profissão que foi regulamentada apenas em 2008, mas que já existe há bem mais tempo nos consultórios odontológicos por todo o Brasil. Peça essencial para um bom atendimento ao paciente, o Auxiliar de Saúde Bucal (ASB) executa diversas funções dentro do consultório além de prestar assistência ao dentista responsável.
Um colaborador para esta função precisa entender não apenas de odontologia, como também de toda a rotina do consultório e deve somar esforços com outros funcionários para que o paciente tenha a melhor experiência possível antes, durante e depois do tratamento.
Mas será que você conhece quais são as funções que esse profissional executa? A seguir, preparamos uma lista com as mais importantes para você entender o que faz um Auxiliar de Saúde Bucal.
As principais funções do Auxiliar de Saúde Bucal
Nós podemos dividir as funções do Auxiliar de Saúde Bucal em quatro grandes fases, que você confere abaixo:
- Antes do atendimento;
- Durante o atendimento;
- Após o atendimento;
- Serviços extras na clínica.
Atividades realizadas antes do atendimento odontológico
Antes do atendimento começar, a função do ASB é de preparar o paciente e coletar informações para a sessão, normalmente por meio de um questionário. Essas atividades são importantes para que o dentista já saiba o que o aguarda. Assim ele pode conhecer um pouco sobre o paciente, seu perfil, medos, dúvidas e outras informações que possam ser relevantes para que o atendimento odontológico ocorra normalmente. Além disso, o ASB também é responsável por separar os materiais que serão usados durante a consulta. Dessa maneira, o tempo dentro da sala do dentista é bastante otimizado.
Durante o atendimento ele auxiliar as intervenções clínicas
É durante o atendimento do paciente que o ASB realiza a maior parte das suas funções numa clínica odontológica. Nesse momento, o ASB fica responsável pelas seguintes tarefas:
- Organizar e executar atividades de higiene bucal com o paciente;
- Auxiliar e instrumentar os odontologistas e técnicos nas intervenções clínicas;
- Manipular materiais de uso odontológico sempre que for necessário.
O trabalho do ASB durante o atendimento do paciente é prestar ajuda aos profissionais que estão com ele da melhor forma possível, para garantir que o cliente seja bem tratado e que sua saúde bucal esteja sempre em boas condições após o atendimento.
Radiologia Odontológica e Imaginologia
As áreas de competência para atuação do especialista em Imaginologia Dentomaxilofacial incluem:
a) Obtenção, interpretação e emissão de laudo das imagens de estruturas buco-maxilo-faciais e anexas obtidas, por meio de: radiologia convencional, digitalizada, subtração, tomografia convencional e computadorizada, ressonância magnética, ultra-sonografia, e outros; e,